BARformula are Oil Palm Bioremediation specialists. Using proprietary advanced microbiological technology we convert 100% of an oil palm mill’s biomass and effluent.

The Heart of Our Microbiology.

The core of our technology has been around for billions of years. BARformula scientists spend almost all their time researching and cultivating microbes, continuously. Process One or P1 is our proprietary blend of enzymatic microbes formulated for Oil Palm biomass and effluent decomposition as well as nutrient recovery.

Bacteria may be aerobic, anaerobic, or facultative. Aerobic bacteria require oxygen for life support whereas anaerobes can sustain life without oxygen. Facultative bacteria have the capability of living either in the presence or in the absence of oxygen. In a typical effluent treatment plant, oxygen is added to improve the functioning of aerobic bacteria and to assist them in maintaining superiority over the anaerobes. Agitation, settling, pH, and other controllables are carefully considered and employed as a means of maximizing the potential of bacterial reduction of organics in the wastewater.

Single-celled organisms grow and when they have attained a certain size, divide, becoming two. Assuming an adequate food supply, they then grow and divide again like the original cell. Every time a cell splits, approximately every 20 to 30 minutes, a new generation occurs. This is known as the exponential or logarithmic growth phase.

At the exponential growth rate, the largest number of cells are produced in the shortest period of time. In Nature and in the laboratory, this growth cannot be maintained indefinitely, simply because the optimum environment for growth cannot be maintained. The amount of growth is the function of two variables: - environment and food. The pattern which actually results is known as the bacterial growth rate curve. Initially dehydrated products (dry) must first re-hydrate and acclimatise in a linear growth phase before the exponential rate is reached.

Microorganisms and their enzyme systems are responsible for many different chemical reactions produced in the degradation of organic matter. As the bacteria metabolize, grow, and divide they produce enzymes. These enzymes are high molecular weight proteins.

It is important to recognize the fact that colonies of bacteria are literally factories for the production of enzymes. The enzymes which are manufactured by the bacteria will be appropriate to the substrate in which the enzyme will be working and so you have automatic production of the right enzyme for the biological reduction of any waste material, provided you have the right bacteria to start with. Enzymes do not reproduce whereas as bacteria do.

Enzymes in biochemical reactions act as organic catalysts. The enzymes actually become a part of the action, but after having caused it, split off from it and are themselves unchanged. After the biochemical reactions are complete and products formed, the enzyme is released to catalyze another reaction. The rate of reaction may be increased by increasing the quantity of the substrate or temperature up to a certain point , but beyond this, the rate of reaction ceases to increase because the enzyme concentration limits it.

BARformula Technology is designed to take advantage of the decomposition of organic materials by bacterial activity. This equates to lower costs, increased capacity, and an improved quality of effluent; even freedom from bad odors which may typically result when anaerobic bacteria become dominant and in their decomposition process, produce hydrogen sulfide gas and similar by-products.

Consider the fact that the total organic load from the mill is composed of varying constituents; it would be quite difficult to degrade all of these organics by the addition of one enzyme, or even several enzymes. Enzymes are specific catalysts and do not reproduce. Process One is an enzyme manufacturing system that is pre-determined to its activity and performance. It has the initial and continuing capacity to decompose the organic matter.

At the present time, the addition of specifically cultured bacteria seems to be the most cost effective and reliable mechanism to accomplish desired results. When you add the right bacteria in proper proportions to the environment, you have established entirely new parameters of potential for the treatment situation.

BACK to The Science Share this article